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Abstract 
     Finding high quality articles is increasingly 
difficult with the exponential growth of the medical 
literature. This growth requires new methods to 
identify high quality articles. In prior work, we 
introduced a machine learning method to identify 
high quality MEDLINE documents in internal 
medicine. The performance of the original filter 
models built with this corpus on years outside 1998-
2000 was not assessed directly. Validating the 
performance of the original filter models on current 
corpora is crucial to validate them for use in current 
years, to verify that the model fitting and model error 
estimation procedures do not over-fit the models, and 
to validate consistency of the chosen ACPJ gold 
standard (i.e., that ACPJ editorial policies and 
criteria are stable over time). Our prospective 
validation results indicated that in the categories of 
treatment, diagnosis, prognosis, and etiology, the 
original machine learning filter models built from the 
1998-2000 corpora maintained their discriminatory 
performance of 0.95, 0.97, 0.94, and 0.94 area under 
the curve in each respective category when applied to 
a 2005 corpus. The ACPJ is a stable, reliable gold 
standard and the machine learning methodology 
provides robust models and model performance 
estimates. Machine learning filter models built with 
1998-2000 corpora can be applied to identify high 
quality articles in recent years. 
  
Introduction 
     The purpose of a query filter is to identify medical 
articles that meet certain criteria (e.g., related to 
quality, impact, or content). Recent approaches have 
utilized machine learning or semi-manually 
constructed Boolean query based filters to pre-select 
articles that meet quality and content criteria [1-5]. 
These filters had good discriminatory performance 
when evaluated using cross-validation techniques [6]. 
     Both machine learning and Boolean filters can 
perform much worse than expected when applied to 
other corpora because of two main reasons: First, it is 
possible for filters to be over-fitted, and second,  the 
examples that were used to train the original filters 
may have a different distribution than the documents 
on which the filters are eventually applied [7].  
     Computational Learning Theory suggests that 
over-fitting typically occurs when filter developers fit 
model parameters using the training data and then 
estimate the future performance of the model on the 

same data, or when very complex models are 
pursued, relative to the classification function’s 
intrinsic complexity especially in small sample 
learning settings (i.e., the complexity of the models 
considered is not tempered by the available sample 
and the difficulty of the learning task) [8]. Sound data 
modelling principles in order to avoid over-fitting  
include: (a) choosing model complexity and 
parameters that minimize both error in the training 
data and complexity of the model class employed; (b) 
estimating future (generalization) error  in portions of 
the data reserved especially for that purpose (i.e., 
they are not used to fit the model) [9].  
     With regards to filter failure because of non-
representative samples, this may occur because of 
small samples or very rare positive examples even if 
the total sample is large. In addition, non i.i.d. 
(independently sampled and identically distributed) 
sampling from the general population of documents. 
may lead to divergence of the training document set 
distribution from the application document set 
distribution. A particularly worrisome reason for 
violation of i.i.d. sampling in our context is if the 
gold standard for document labelling is not stable 
over time. For example, if the editorial policies of the 
ACP Journal Club changes over time, a filter built 
with an older editorial policy may exhibit worse 
performance for documents characterized as high-
quality according to a more recent and thus revised 
editorial policy.  
     In this study, we address these points of failure for 
both Machine Learning (i.e., our own) and 
Boolean/semi-manual (i.e., Pubmed/Haynes et al’s 
Clinical Query (CQ)) filters. We explore the extent of 
over-fitting or changes in the characteristics of the 
data by evaluating classification performance on 
articles collected independently of the original 
corpus. We built a machine learning filter model 
using a training corpus collected in one year, 
evaluated its performance on a prospective testing 
corpus collected in another year, and in the same 
prospective corpus, compared the machine learning 
filter models to the CQ filters [10] of Pubmed1.     
Thus, we have two main hypotheses. First, machine 

                                                
1 The CQF filters are literally Boolean combinations 
of terms applied to a corpus. The machine learning 
filter models, in contrast, are not Boolean based. The 
machine learning filters are statistical models using 
all the terms in the training corpus. 
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learning filter models built from an original corpus 
collected from 1998 to 2000 are able to identify high 
quality articles in an independently collected 2005 
corpus and perform as well as estimated performance 
measures using cross-validation on the original 
corpus. Second, machine learning filter models retain 
their performance edge over the corresponding CQ 
filters in the 2005 corpus.  
 
Methods 
Definitions  
     At the core of our efforts lie the selection of a 
rigorous quality, content gold standard and the 
creation of a document collection that captures this 
gold standard. The ACP journal club is a highly-rated 
meta-publication [11].  Every month experts review 
the best journals in internal medicine and select the 
best articles according to specific selection criteria in 
the article class areas of: treatment, diagnosis, 
etiology, prognosis, quality improvement, clinical 
prediction guide, and economics.  Selected articles 
are further subdivided into articles that are cited and 
abstracted by the ACP because of their clinical 
importance, and those that are only cited because 
they meet all the selection criteria but may not pertain 
to vitally important clinical areas. Every article is 
subjected to rigorous review for inclusion [11].  By 
using articles abstracted and cited by the ACP as our 
gold standard, we capitalize on an existing high 
quality review. 
     
Corpus Construction  
     We constructed corpora in the treatment, etiology, 
diagnosis, and prognosis categories spanning the time 
periods of July 1998 – August 1999, July 1998 – 
August 2000, and March 11, 2005 – August 31, 2005.  
From [1], we reused the two corpora built from the 
first two periods. For each corpus, we started with 49 
journals, selected the respective time period, and 
collected all articles with abstracts published by these 
journals.  We then reviewed the ACP Journal Club 
for at least 18 months after the specified time period 
for each corpus, and labeled as positive any article 
that was cited/ abstracted by the Journal Club in the 
time period. The first corpus spanning July 1998 – 
August 1999 resulted in a positive/negative article 
distribution of 379/ 15,407 articles in treatment, and 
205/ 15,581 articles in etiology. The second corpus 
spanning July 1998 – August 2000 resulted in a 
positive/negative article distribution of 74/34,864 
articles in prognosis, and 102/34,836 articles in 
diagnosis.  Refer to [1] for additional details and 
motivations for these constructed corpora. 
     We constructed the third corpus for the 
prospective analysis from March 11, 2005-August 
31, 2005.  We built the third corpus using the 

electronic citations available from the ACP Journal 
club at http://www.acpjc.org. Both articles cited and 
abstracted and articles cited only were available in 
both the print and electronic versions of the journal 
club.  As of July 2005, the electronic version 
included an expanded list of articles cited only 
available at http://www.acpjc.org/Content/oan which 
we included in the independent dataset.   
     We covered available electronic citations in the 
Journal Club from July/Aug 2005 to Jan/Feb 2006 in 
41 journals selected for their overlap with the 1998-
2000 49 journals2. Because the time frame covered 
by the Journal Club varied from month to month, we 
selected 3/11/2005 as the start time period for this 
third corpus by averaging the earliest citation given in 
each journal, and the end time period of 8/31/2005 by 
averaging the latest citation given in each of the 41 
selected journals. If no article occurs in a given 
journal, a date is not included in the average. Thus we 
selected all articles with abstracts published in 41 
journals from 3/11/2005 to 8/31/2005 and identified 
articles cited in this time period by the ACP Journal 
club as positive and all others were identified as 
negative. This procedure resulted in a 
positive/negative article distribution of 351/6,921, 
47/7,601, 30/7,618, 23/7,625 in treatment, etiology, 
prognosis, and diagnosis respectively. 
     All original articles as Pubmed citations (i.e. 
abstracts, not full text) were downloaded with the 
esearch and efetch utilities available from Pubmed 
[12]. Each search was limited to the title of one of the 
journals, set to only retrieve articles during the 
publication period, and with the “only items with 
abstracts” checkbox marked. A custom parser 
extracted PubmedID, title, journal, abstract, 
publication type, and MeSH terms from the XML 
efetch downloads.  
 
Article Preparation  
     The conversion of documents to a format suitable 
for the machine learning algorithm followed the 
procedures in [1]. The articles in the ACPJ selected 
journals were cross-referenced in PubMed, and the 
title, abstract, journal, publication type, and MeSH 
terms were extracted. We created two representations 
for each document: one for the machine learning 
algorithm, and one for the CQ filters.   
     For the machine learning algorithm, we 
represented each document as a set of terms for the 
learning algorithms [13].  We additionally stemmed 
each term [14], removed “stopword” terms [15], and 
removed any terms occurring in fewer than 5 
documents. Very infrequent terms are difficult to 

                                                
2 Journal lists for both corpora are available from the 
authors. 
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assess statistically and may affect negatively the 
generalization of the classification models. Terms 
were further encoded as weighted features using a log 
frequency with redundancy scheme [16].  
     For the CQ filters, we represented each document 
as a set of terms.  Words were not stemmed, but 
“stopwords” and infrequent terms (occurring in < 5 
documents) were removed. 
 
Statistical and Machine Learning Methods 
Support Vector Machines (SVMs) 
     In our experiments, we employed Support Vector 
Machine (SVM) classification algorithms. The 
SVM’s calculate maximal margin hyperplane(s) 
separating two or more classes of the data. To 
accomplish this, the data are mapped to a higher 
dimensional space by means of a kernel function, 
where a separating hyperplane is found by solving a 
constrained quadratic optimization problem [17]. 
SVMs have had superior text classification 
performance compared to other methods [1, 18], and 
this motivated our use of them.  We used an SVM 
classifier implemented in libSVM v2.8 [19] with a 
polynomial kernel. We optimized the SVM penalty 
parameter C over the range {0.1, 1, 2} with 
imbalanced costs applied to each class proportional to 
the priors in the data [20], and degree d of the 
polynomial kernel over the range {1, 2}. Since 
theoretical literature on domain characteristics as it 
relates to optimal parameter selection is not yet 
developed, the ranges of costs and degrees for 
optimization were chosen based on previous 
empirical studies [1, 18]. Different combinations of 
costs and degrees were exhaustively evaluated by 
cross-validation. 
 
Clinical Query Filters 
     The CQ filters are Boolean queries optimized 
separately for sensitivity, specificity, and accuracy 
[10]. We applied the exact queries for optimized 
sensitivity and specificity cited in Pubmed and 
recently updated with a year 2000 corpus to the text 
categorization task [2-4].  
 
Estimating Model Performance 
     We used 5-fold cross-validation that avoids over-
fitting to estimate the performance of the learning 
algorithms [6]. This choice for n provided sufficient 
high-quality positive samples for training in each 
category and provided sufficient article samples for 
the classifiers to learn the models. The cross-
validation procedure first divided the data randomly 
into 5 non-overlapping subsets of documents where 
the proportion of positive and negative documents in 
the full dataset is preserved for each subset. Next, the 
following was repeated 5 times: we used one subset 

of documents for testing (the “original testing set”) 
and the remaining four subsets for training (the 
“original training set”) of the classifier. The average 
performance over 5 original testing sets is reported.  

In order to optimize parameters of the SVM 
algorithms, we used another “nested” loop of cross-
validation by further splitting each of the 5 original 
training sets into smaller training sets and validation 
sets. For each combination of learner parameters, we 
obtained cross-validation performance and selected 
the best performing parameters inside this inner loop 
of cross-validation. We next built a model with the 
best parameters on the original training set and 
applied this model to the original testing set. Details 
about the “nested cross-validation” procedure can be 
found in [7, 21]. Notice that the final performance 
estimate obtained by this procedure will be unbiased 
because each original testing set is used only once to 
estimate performance of a single model that was built 
by using training data exclusively. 
 
Applying Filters to Prospective Corpora 
     We built final machine learning filter models in 
each category using the 1998-1999 and 1998-2000 
corpora and then applied both the final machine 
learning filter models and the CQ filters to the 
prospective 2005 corpus. We built the final machine 
learning filter models by selecting best performing 
parameters (i.e. cost and degree) and applying these 
parameters to build final models in each category 
using all the data. Best parameters were selected by 
first, dividing the data into 5 non-overlapping subsets 
preserving positive/ negative proportions. For each 
set of parameters, we estimated performance using 
cross-validation over the 5 folds. Average 
performance across all folds with each set of 
parameters was recorded. We selected the parameters 
that built the best performing filter model, and used 
these parameters to build a final machine learning 
filter model for each category using all the data. 
  
Comparing CQ Filters to Learning Models 
     We compared the sensitivity and specificity of the 
machine learning filter models with the sensitivity 
and specificity of the respective optimized Boolean 
CQ filter [10]. The CQ filters return articles with the 
query terms present, whereas the learning algorithms 
return a score. To make the comparison, in each fold, 
we fixed the sensitivity value returned by the 
sensitivity-optimized CQ filter and varied the 
threshold for the scored articles until the sensitivity 
was matched. We report the fixed sensitivity, 
corresponding specificity, and precision. The same 
procedure was run for the specificity returned by the 
optimized specificity CQ filter. 
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Table 1: Top row is cross-validation estimated  
area under the curve for optimal 1998-1999 and 
1998-2000 models. Bottom row is area under the 
curve for the optimal models applied to 2005 
corpora (no cross-validation applied). Treat – 
treatment, Diag – diagnosis, Prog-prognosis, Etio 
– etiology. ± - is the range of AUC estimates 
across the 5 folds. 

 Treat Diag Prog Etio 
X-Val 
AUC 

0.97± 
.02  

0.99 ± 
.02 

0.95± 
.02 

0.95 ± 
.01 

2005 0.95 0.97 0.94 0.94 

Results 
Area under the curve analysis 
     We built machine learning filter models for 
treatment, etiology, prognosis, and diagnosis 
categories using the 1998-1999 and 1998-2000 
corpora. In Table 1, we report the cross-validation 
area under the ROC curve for the 1998-1999 and 
1998-2000 built machine learning filter models, and 

area under the ROC curve performance when the 
machine learning filter models were applied to the 
entire 2005 corpora in the 4 categories. 
     The optimal machine learning filter models built 
using the 1998-1999 and 1998-2000 corpora and 
applied to the 2005 corpora had performances within 
the range of estimates of each fold in each cross-
validation set.  The optimal machine learning filter 
models were able to discriminate high quality articles 
from other non-high-quality articles in the 2005 
corpora. 
 
Comparison to CQ filters 
     We applied the CQ filters of Pubmed to the entire 
2005 corpora and reported their corresponding 

sensitivity and specificities in Table 2. In all 4 
categories, the CQ filters performed well. The 
support vector machine outperforms the CQ filters in 
sensitivity, specificity, and precision at fixed 
sensitivity and specificity levels. 
     The specificity and sensitivity optimized 
prognosis CQ filters and specificity optimized 
etiology CQ filters have lower sensitivity and 
specificity than previously reported results. The 
sensitivity optimized prognosis CQ filter (90.0% as 
reported in [3] vs. 80.0% in the current study), 
specificity optimized prognosis CQ filter (94.1% as 
reported in  [3] vs. 76.8% in the current study), and 
the specificity optimized etiology CQ filter (94.9% as 
reported in [2] vs. 83.9% in the current study) do not 
perform as expected. Further investigation is 
necessary to determine the cause of this performance 
discrepancy and possible solutions. 
 
Discussion 
     These experiments addressed a pertinent and 
important question for using a filter to identify 
articles in a corpus. If we built machine learning or 
apply semi-manually constructed Boolean-based CQ 
filters using a corpus from a different time period, 
can we reliably apply these filters to current corpora 
and identify the high quality articles. 
     Our results showed that we can identify articles in 
this 2005 corpus using CQ filters or machine learning 
filter models. The optimized machine learning filter 
models built with the 1998-1999 and 1998-2000 
corpora from [1] do generalize as estimated by the 
cross-validation procedure and were able to identify 
high quality articles accurately in a 2005 corpora as 
measured by area under the curve. The CQ filters of 
Pubmed were also able to identify high quality 

Table 2 – Optimized Support Vector Machine (SVM) compared to Clinical Query Filters fixed at optimal 
sensitivity and specificity.  All values are calculated using the entire 2005 corpora. 
Category Optimized For Method Sensitivity Specificity Precision 
Treatment Sensitivity Query Filters 0.710 0.147 
  SVM 

0.980 
0.888 0.305 

 Specificity Query Filters 0.803 0.318 
  SVM 0.948 

0.913 
0.349 

Etiology Sensitivity Query Filters 0.435 0.010 
  SVM 

0.979 
0.753 0.024 

 Specificity Query Filters 0.681 0.025 
  SVM 0.936 

0.839 
0.035 

Diagnosis Sensitivity Query Filters 0.682 0.01 
  SVM 

0.956 
0.884 0.02 

 Specificity Query Filters 0.652 0.07 
  SVM 0.821 

0.972 
0.08 

Prognosis Sensitivity Query Filters 0.707 0.011 
  SVM 

0.800 
0.874 0.024 

 Specificity Query Filters 0.800 0.013 
  SVM 1.00 

0.768 
0.017 
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articles. As anticipated by [1], the optimized machine 
learning filter models generalize well and had 
superior ability over the optimized CQ filters to 
identify quality articles in the 2005 corpus. 
     These results also validate the optimization 
methods used to build the machine learning filter 
models and the consistent editorial policies of the 
ACP Journal Club.  The ability of the 1998-1999 and 
1998-2000 corpora based machine learning filter 
models to identify high quality articles in the 2005 
corpus imply that the procedure to optimize the 
machine learning filter model (through cross-
validation) is valid and creates robust models and 
model performance estimates. 
     Furthermore, the ACP Journal Club is a 
consistent, stable gold standard. The 1998-1999 and 
1998-2000 based corpora machine learning filter 
models discriminatory power to identify high quality 
articles succeeds due to consistent article selection in 
the original and prospective corpora. The machine 
learning filter models prediction of high quality 
articles in the 2005 corpora imply that the 
methodologic criteria for high quality articles has not 
changed over time, and we may reliably apply these 
machine learning filter models in current years. 
     The true purpose of any filter is to identify high 
quality articles in later corpora. This paper is a step to 
validating filters for medical information retrieval. 
Coupled with our previous work [1], we are 
establishing a foundation for usage of these filters.  
     In current work, we are systematically evaluating 
these filters in answering “real-life” clinical 
questions. As a first step, we have built a prototype at 
www.ebmsearch.org. How well these filters can 
assist expert reviewers and their generalization to 
other categories and domains are open questions that 
we have experiments underway to answer. 
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